A New, Scalable and Robust Land Ice Dynamical Core

Built for Advanced Analysis

unstructured mesh for

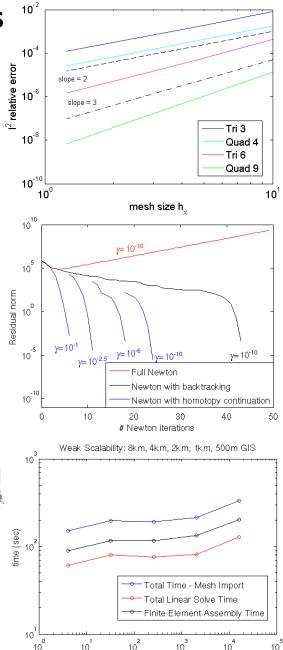
Greenland

Problem

New climate models, like ACME, aiming to simulate the evolution of large ice sheets require scalable, robust, efficient, and accurate ice flow models with advanced analysis capabilities.

Approach

Using a component-based approach with *Trilinos*, we have built *Albany/FELIX*, a new finite element, first-order (FO) Stokes solver for land ice. New contributions in addition to the model include:


- (1) New manufactured-solution-based test cases for 2D forms of the FO Stokes equations (top right)
- (2) Development of a homotopy continuation algorithm for robust nonlinear Newton solves (middle right)

(3) Development of a new algebraic multilevel preconditioner for scalable linear solves (bottom right).

Impact

New parallel, scalable and robust, first-order accurate ice flow model for unstructured grids, callable from MPAS-Land Ice and being coupled to ACME.

I. K. Tezaur, M. Perego, A.G. Salinger, R.S. Tuminaro, S.F. Price. *Albany/FELIX:* a parallel, scalable and robust finite element first-order Stokes approximation ice sheet solver built for advanced analysis. *Geosci. Model Dev.* 8 1-24, 2015.

cores